Triptolide reduces cyst formation in a neonatal to adult transition Pkd1 model of ADPKD.
نویسندگان
چکیده
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD), a major cause of end-stage renal failure, results from genetic mutation of either polycystin-1 (Pkd1) or polycystin-2 (Pkd2). In order to develop novel therapies to treat the advancement of disease progression, numerous rodent models of different genetic backgrounds are available to study cyst development. METHODS Here, a Pkd1-floxed inducible mouse model using the interferon responsive Mx1Cre-recombinase was utilized to test the effect of the small molecule triptolide. Relative to other Pkd1 inactivation models, cyst progression in this neonatal to adult transition model is attenuated. Following the characterization of inducible cyst formation in these mice, the development of kidney cysts from triptolide or vehicle-treated animals was analysed. RESULTS Although Pkd1 deletion on postnatal Days P10 and P12 resulted in numerous cysts by P35, daily injections with triptolide beginning on Day P16 significantly reduced the total number of cysts per kidney, with a pronounced effect on the number of microcysts and the overall cystic burden. Additionally, renal function as assessed by blood urea nitrogen levels was also improved in triptolide-treated mice at both the P22 and P35 time points. As the Pkd1(flox/flox);Mx1Cre model has not been previously used for drug development studies, the feasibility of a 6-month adult Pkd1 inactivation study was also tested. While kidney cyst formation was minimal and focal in nature, livers of these Pkd1-deficient mice were severely cystic, enlarged and pale. CONCLUSIONS These results suggest that the Pkd1(flox/flox);Mx1Cre model of ADPKD is amenable to short-term kidney cyst formation drug studies; however, it may be problematic for long-term therapeutic research where widespread liver cysts and fibrosis could compromise drug metabolism.
منابع مشابه
Triptolide reduces cystogenesis in a model of ADPKD.
Mutations in PKD1 result in autosomal dominant polycystic kidney disease, which is characterized by increased proliferation of tubule cells leading to cyst initiation and subsequent expansion. Given the cell proliferation associated with cyst growth, an attractive therapeutic strategy has been to target the hyperproliferative nature of the disease. We previously demonstrated that the small mole...
متن کاملPyrimethamine inhibits adult polycystic kidney disease by modulating STAT signaling pathways.
Autosomal dominant polycystic kidney disease (ADPKD) is a commonly inherited disorder mostly caused by mutations in PKD1, encoding polycystin-1 (PC1). The disease is characterized by development and growth of epithelium-lined cyst in both kidneys, often leading to renal failure. There is no specific treatment for this disease. Here, we report a sustained activation of the transcription factor s...
متن کاملRapamycin-mediated suppression of renal cyst expansion in del34 Pkd1-/- mutant mouse embryos: an investigation of the feasibility of renal cyst prevention in the foetus.
AIM Polycystic kidney disease (PKD) in humans involves kidney cyst expansion beginning in utero. Recessive PKD can result in end-stage renal disease (ESRD) within the first decade, whereas autosomal dominant PKD (ADPKD), caused by mutations in the PKD1 or PKD2 gene, typically leads to ESRD by the fifth decade of life. Inhibition of mTOR signalling was recently found to halt cyst formation in ad...
متن کاملDifferences in the timing and magnitude of Pkd1 gene deletion determine the severity of polycystic kidney disease in an orthologous mouse model of ADPKD
Development of a disease-modifying therapy to treat autosomal dominant polycystic kidney disease (ADPKD) requires well-characterized preclinical models that accurately reflect the pathology and biochemical changes associated with the disease. Using a Pkd1 conditional knockout mouse, we demonstrate that subtly altering the timing and extent of Pkd1 deletion can have a significant impact on the o...
متن کاملOverexpression of PKD1 causes polycystic kidney disease.
The pathogenetic mechanisms underlying autosomal dominant polycystic kidney disease (ADPKD) remain to be elucidated. While there is evidence that Pkd1 gene haploinsufficiency and loss of heterozygosity can cause cyst formation in mice, paradoxically high levels of Pkd1 expression have been detected in the kidneys of ADPKD patients. To determine whether Pkd1 gain of function can be a pathogeneti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association
دوره 25 7 شماره
صفحات -
تاریخ انتشار 2010